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Polygenic Risk Scores

Risk assessments of clinical disease consider demographics, medical history, lifestyle and lab
results. Heredity plays a significant role in many common human diseases. Yet, the genetic
contribution to disease risk is not well-integrated into clinical practice.

Polygenic Risk Scores (PRS) sum up the impacts of many inherited variants on the risk of
developing a specific disease. They can identify high-risk individuals to target for early
therapeutic intervention (Choi, Mak, and O'Reilly 2020; Torkamani, Wineinger, and Topol 2018).
Most PRS models include thousands of variants with small effects on disease risk. These
variants are identified by Genome-Wide Association Studies (GWAS). GWASs look for genetic
differences between disease cases and healthy controls. Each GWAS examines millions of
variants. If variants are much more or less common in the case group they may be associated
with the disease. Each variant’s effect size is an estimate of its contribution to disease risk.
Aggregating the effects of the disease-associated variants yields PRSs (Choi, Mak, and O’Reilly
2020; Uffelmann et al. 2021).

PRS Validation

PRS models built from larger or even multiple GWASs tend to be more predictive. We generate
and test a great number of PRS models. Once we build a PRS model, we check the risk
predictions in another validation dataset. These datasets include genetic information and
case-control status in a new independent group. In a robust PRS model, we expect cases in the
validation dataset to receive higher risk scores more often than controls.

In Figure 1, we examine a stroke and a type 2 diabetes (T2D) PRS model. These models predict
an individual’s relative genetic risk of stroke or developing T2D. The stroke PRS model was built
from a large multi-ancestry GWAS of approximately 67,000 stroke cases and 450,000 controls
(Malik et al. 2018). The T2D PRS model was created from a GWAS that included approximately
63,000 Europeans with T2D and 600,000 controls (Xue et al. 2018).
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Fig 1: Performance of Stroke and type 2 Diabetes models. The polygenic risk score (PRS) is plotted
against the actual prevalence of the disease. Each dot represents multiple individuals with that PRScore.
Here we see the expected trend of greater disease prevalence cases at higher genetic risk levels. There
are fewer points in the stroke PRS model as we have fewer individuals affected by stroke in our validation
datasets.

Portability of PRS Models

When new GWAS are performed in study groups with a different ancestry or demographic
composition, they identify new variants and also find some previously-tagged variants to be
unassociated in these new populations. Repeated GWAS show that PRS models that predict risk
well in one group may not be accurate in another group. These differences exist because
patterns of linkage disequilibrium (LD) vary between populations. LD is the association between
stretches of variants due to shared inheritance. GWAS use tag variants to mark each stretch and
the associated variants. Differences in LD by population mean that the tagged stretch can
change. So, a tag variant might tag a disease-associated variant in one population but not in
another. This leads to differences in variants that affect a disease, for different populations. This
also affects effect sizes, and ultimately, PRS accuracy.

Still, the majority of GWAS participants are European. As a result, PRS models drawn from these
studies are difficult to generalize to other populations. Studies show that for many common
human diseases, PRS accuracy can drop as low as 30-40% when applied to non-GWAS
populations. The lowest predictability is observed for Asians, Africans, and those with multiple
ancestries. One study found PRS accuracy decreased with increasing African ancestry in mixed
Afro-Europeans (Cavazos and Witte 2021) (Fig 2). Demographic differences, such as
socioeconomic status or age, can also impact PRS performance. This restricts PRS use in real
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patient populations (Sirugo, Williams, and Tishkoff 2019; Martin et al. 2019; Mostafavi et al.
2020; Weissbrod et al. 2021; Cavazos and Witte 2021).
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Fig 2: (From Cavazos and Witte, 2020). Accuracy of PRS models derived from a European-ancestry
GWAS. CEU refers to the proportion of European ancestry, as opposed to African ancestry. As CEU
decreases, the proportion of African ancestry of the individuals increases. Accuracy drops with
increasing African Ancestry, and is lowest for African-only.

To check that our PRS are accurate in diverse patient populations, we create models for
different ancestries. We then test their performance in multiple populations. We also apply
techniques to decrease the impact of biased associations. These practices increase the
likelihood that PRS will be usable in clinical settings. We have made further improvements to
PRS performance by introducing these new approaches. These changes have increased our risk
prediction accuracy beyond existing methods (Fig 3).

One metric we use to assess model accuracy is the 'area under the curve' (AUC) (Choi, Mak, and
O'Reilly 2020) (Fig 3). Higher AUC values mean a PRS model is better at predicting risk. An AUC
value near 50% indicates near-random predictive performance. Models that do not initially
perform well are refined further until their accuracy increases to acceptable levels. If we are
unable to improve them, they are discarded.
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Fig 3: Comparison of PRS stratification ability, as measured by AUC in a validation set of 1,500 Asians
using PRS models optimized for this ancestry. These PRS models are for stoke and type 2 diabetes risk.
The comparison is between industry-leading approaches and our in-house approach.

Many clinicians already use risk calculators to identify high-risk patients and guide
interventions. Screening tools often incorporate ethnicity to improve accuracy. This is because
some risk factors, like high BMI, do not impact each ethnicity in the same way (Chan et al. 2009;
Ma and Chan 2013). Differences in disease risk between populations can have genetic or
environmental causes. Our goal is to help clinicians understand the genetic contribution to
patient disease risk. For this to be possible, PRS models must be accurate in all patient
populations. A clear picture of risk origins can assist with early detection and intervention, and
ultimately improve patient outcomes.
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